• 1.

    Claussnitzer, M. et al. A brief history of human disease genetics. Nature 577, 179–189 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 2.

    Hiller, M. et al. A “forward genomics” approach links genotype to phenotype using independent phenotypic losses among related species. Cell Rep. 2, 817–823 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 3.

    Wasser, S. K. et al. Genetic assignment of large seizures of elephant ivory reveals Africa’s major poaching hotspots. Science 349, 84–87 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 4.

    Wright, B. et al. Development of a SNP-based assay for measuring genetic diversity in the Tasmanian devil insurance population. BMC Genomics 16, 791 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 5.

    Lappalainen, T., Scott, A. J., Brandt, M. & Hall, I. M. Genomic analysis in the age of human genome sequencing. Cell 177, 70–84 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 6.

    Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46, 310–315 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 7.

    Lindblad-Toh, K. et al. A high-resolution map of human evolutionary constraint using 29 mammals. Nature 478, 476–482 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 8.

    Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 9.

    IUCN. The IUCN Red List of Threatened Species. Version 2019-2 http://www.iucnredlist.org (2019).

  • 10.

    Ryder, O. A. & Onuma, M. Viable cell culture banking for biodiversity characterization and conservation. Annu. Rev. Anim. Biosci. 6, 83–98 (2018).

    PubMed  Google Scholar 

  • 11.

    Weisenfeld, N. I. et al. Comprehensive variation discovery in single human genomes. Nat. Genet. 46, 1350–1355 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 12.

    Putnam, N. H. et al. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res. 26, 342–350 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 13.

    Kim, J. et al. Reconstruction and evolutionary history of eutherian chromosomes. Proc. Natl Acad. Sci. USA 114, E5379–E5388 (2017).

    CAS  PubMed  Google Scholar 

  • 14.

    Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 15.

    Balasubramanian, S. et al. Using ALoFT to determine the impact of putative loss-of-function variants in protein-coding genes. Nat. Commun. 8, 382 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 16.

    Meadows, J. R. S. & Lindblad-Toh, K. Dissecting evolution and disease using comparative vertebrate genomics. Nat. Rev. Genet. 18, 624–636 (2017).

    CAS  PubMed  Google Scholar 

  • 17.

    Cooper, G. M. & Shendure, J. Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data. Nat. Rev. Genet. 12, 628–640 (2011).

    CAS  PubMed  Google Scholar 

  • 18.

    Baiz, M. D., Tucker, P. K., Mueller, J. L. & Cortés-Ortiz, L. X-linked signature of reproductive isolation in humans is mirrored in a howler monkey hybrid zone. J. Hered. 111, 419–428 (2020).

    PubMed  PubMed Central  Google Scholar 

  • 19.

    Dobzhansky, T. & Dobzhansky, T. G. Genetics and the Origin of Species (Columbia Univ. Press, 1937).

  • 20.

    Herrera-Álvarez, S., Karlsson, E., Ryder, O. A., Lindblad-Toh, K. & Crawford, A. J. How to make a rodent giant: genomic basis and tradeoffs of gigantism in the capybara, the world’s largest rodent. Preprint at https://doi.org/10.1101/424606 (2018).

  • 21.

    Abegglen, L. M. et al. Potential mechanisms for cancer resistance in elephants and comparative cellular response to DNA damage in humans. J. Am. Med. Assoc. 314, 1850–1860 (2015).

    CAS  Google Scholar 

  • 22.

    Casewell, N. R. et al. Solenodon genome reveals convergent evolution of venom in eulipotyphlan mammals. Proc. Natl Acad. Sci. USA 116, 25745–25755 (2019).

    CAS  PubMed  Google Scholar 

  • 23.

    Beichman, A. C. et al. Aquatic adaptation and depleted diversity: a deep dive into the genomes of the sea otter and giant otter. Mol. Biol. Evol. 36, 2631–2655 (2019).

    CAS  PubMed  Google Scholar 

  • 24.

    Damas, J. et al. Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. Proc. Natl Acad. Sci. USA 117, 22311–22322 (2020).

    CAS  PubMed  Google Scholar 

  • 25.

    Xue, Y. et al. Mountain gorilla genomes reveal the impact of long-term population decline and inbreeding. Science 348, 242–245 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 26.

    Ceballos, F. C., Joshi, P. K., Clark, D. W., Ramsay, M. & Wilson, J. F. Runs of homozygosity: windows into population history and trait architecture. Nat. Rev. Genet. 19, 220–234 (2018).

    CAS  PubMed  Google Scholar 

  • 27.

    Spielman, D., Brook, B. W. & Frankham, R. Most species are not driven to extinction before genetic factors impact them. Proc. Natl Acad. Sci. USA 101, 15261–15264 (2004).

    ADS  CAS  PubMed  Google Scholar 

  • 28.

    Vinson, J. P. et al. Assembly of polymorphic genomes: algorithms and application to Ciona savignyi. Genome Res. 15, 1127–1135 (2005).

    PubMed  PubMed Central  Google Scholar 

  • 29.

    MacManes, M. D. & Lacey, E. A. The social brain: transcriptome assembly and characterization of the hippocampus from a social subterranean rodent, the colonial tuco-tuco (Ctenomys sociabilis). PLoS ONE 7, e45524 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 30.

    Jones, K. E. et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648 (2009).

    Google Scholar 

  • 31.

    Cardillo, M. Biological determinants of extinction risk: why are smaller species less vulnerable? Anim. Conserv. 6, 63–69 (2003).

    Google Scholar 

  • 32.

    Natesh, M. et al. Empowering conservation practice with efficient and economical genotyping from poor quality samples. Methods Ecol. Evol. 10, 853–859 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 33.

    Lowry, D. B. et al. Breaking RAD: an evaluation of the utility of restriction site-associated DNA sequencing for genome scans of adaptation. Mol. Ecol. Resour. 17, 142–152 (2017).

    CAS  PubMed  Google Scholar 

  • 34.

    Shapiro, B. Pathways to de-extinction: how close can we get to resurrection of an extinct species? Funct. Ecol. 31, 996–1002 (2017).

    Google Scholar 

  • 35.

    Benazzo, A. et al. Survival and divergence in a small group: the extraordinary genomic history of the endangered Apennine brown bear stragglers. Proc. Natl Acad. Sci. USA 114, E9589–E9597 (2017).

    CAS  PubMed  Google Scholar 

  • 36.

    Saremi, N. F. et al. Puma genomes from North and South America provide insights into the genomic consequences of inbreeding. Nat. Commun. 10, 4769 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 37.

    Armstrong, J. et al. Progressive Cactus is a multiple-genome aligner for the thousand-genome era. Nature https://doi.org/10.1038/s41586-020-2871-y (2020).

  • 38.

    Haeussler, M. et al. The UCSC genome browser database: 2019 update. Nucleic Acids Res. 47, D853–D858 (2019).

    CAS  PubMed  Google Scholar 

  • 39.

    Rands, C. M., Meader, S., Ponting, C. P. & Lunter, G. 8.2% of the human genome is constrained: variation in rates of turnover across functional element classes in the human lineage. PLoS Genet. 10, e1004525 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 40.

    ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    ADS  Google Scholar 

  • 41.

    GTEx Consortium. Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).

    PubMed Central  Google Scholar 

  • 42.

    Regev, A. et al. The human cell atlas. eLife 6, e27041 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 43.

    Lewin, H. A. et al. Earth BioGenome project: sequencing life for the future of life. Proc. Natl Acad. Sci. USA 115, 4325–4333 (2018).

    CAS  PubMed  Google Scholar 

  • 44.

    Koepfli, K.-P., Paten, B., the Genome 10K Community of Scientists & O’Brien, S. J. The Genome 10K project: a way forward. Annu. Rev. Anim. Biosci. 3, 57–111 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 45.

    Teeling, E. C. et al. Bat biology, genomes, and the Bat1K project: to generate chromosome-level genomes for all living bat species. Annu. Rev. Anim. Biosci. 6, 23–46 (2018).

    PubMed  Google Scholar 

  • 46.

    Feng, S. et al. Dense sampling of bird diversity increases power of comparative genomics. Nature https://doi.org/10.1038/s41586-020-2873-9 (2020).

  • 47.

    Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34, 1812–1819 (2017).

    CAS  PubMed  Google Scholar 

  • 48.

    Wilson, D. E. & Reeder, D. M. (eds) Mammal Species of the World. A Taxonomic and Geographic Reference 3rd edn (Johns Hopkins Univ. Press, 2005).

  • 49.

    Vlieghe, D. et al. A new generation of JASPAR, the open-access repository for transcription factor binding site profiles. Nucleic Acids Res. 34, D95–D97 (2006).

    CAS  PubMed  Google Scholar 

  • 50.

    Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 51.

    Farré, M. et al. A near-chromosome-scale genome assembly of the gemsbok (Oryx gazella): an iconic antelope of the Kalahari desert. Gigascience 8, giy162 (2019).

    PubMed Central  Google Scholar 

  • 52.

    McKenna, A. et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 53.

    DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 54.

    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 55.

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 56.

    Benaglia, T., Chauveau, D., Hunter, D. & Young, D. mixtools: an R package for analyzing finite mixture models. J. Stat. Softw. 32, 1–29 (2009).

    Google Scholar 

  • 57.

    R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (2019).

  • 58.

    Paten, B. et al. Cactus: algorithms for genome multiple sequence alignment. Genome Res. 21, 1512–1528 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 59.

    Ondov, B. D. et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol. 17, 132 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 60.

    Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-4.0. http://www.repeatmasker.org/ (2013–2015).

  • 61.

    Hubisz, M. J., Pollard, K. S. & Siepel, A. PHAST and RPHAST: phylogenetic analysis with space/time models. Brief. Bioinform. 12, 41–51 (2011).

    CAS  PubMed  Google Scholar 

  • 62.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    MathSciNet  MATH  Google Scholar 

  • 63.

    Benson, D. A. et al. GenBank. Nucleic Acids Res. 41, D36–D42 (2013).

    CAS  PubMed  Google Scholar 

  • 64.

    Nguyen, N. et al. Comparative assembly hubs: web-accessible browsers for comparative genomics. Bioinformatics 30, 3293–3301 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 65.

    Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 66.

    Pinheiro, E. C., Taddei, V. A., Migliorini, R. H. & Kettelhut, I. C. Effect of fasting on carbohydrate metabolism in frugivorous bats (Artibeus lituratus and Artibeus jamaicensis). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 143, 279–284 (2006).

    PubMed  Google Scholar 

  • 67.

    Gordon, L. M. et al. Amorphous intergranular phases control the properties of rodent tooth enamel. Science 347, 746–750 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 68.

    Hindle, A. G. & Martin, S. L. Intrinsic circannual regulation of brown adipose tissue form and function in tune with hibernation. Am. J. Physiol. Endocrinol. Metab. 306, E284–E299 (2014).

    CAS  PubMed  Google Scholar 

  • 69.

    Stanford, K. I. et al. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J. Clin. Invest. 123, 215–223 (2013).

    CAS  PubMed  Google Scholar 

  • 70.

    Chondronikola, M. et al. Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes 63, 4089–4099 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 71.

    Saito, M. et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58, 1526–1531 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leave a Reply

    Your email address will not be published. Required fields are marked *

    You May Also Like

    Trump signs an executive order allowing mining the Moon and asteroids – Universe Today

    In 2015, the Obama administration signed the U.S. Commercial Space Launch Competitiveness…

    SpaceX test-fires rocket, preps for final flight of first-generation Dragon capsule – Spaceflight Now

    SpaceX test-fired a Falcon 9 rocket Sunday on pad 40 at Cape…