• 1.

    DiVincenzo, D. The physical implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000).

    MATH  Google Scholar 

  • 2.

    Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 3.

    Kandala, A. et al. Error mitigation extends the computational reach of a noisy quantum processor. Nature 567, 491–495 (2019).

    ADS  CAS  Google Scholar 

  • 4.

    Lutchyn, R., Glazman, L. & Larkin, A. Kinetics of the superconducting charge qubit in the presence of a quasiparticle. Phys. Rev. B 74, 064515 (2006).

    ADS  Google Scholar 

  • 5.

    Martinis, J. M., Ansmann, M. & Aumentado, J. Energy decay in superconducting Josephson-junction qubits from nonequilibrium quasiparticle excitations. Phys. Rev. Lett. 103, 097002 (2009).

    ADS  Google Scholar 

  • 6.

    Jin, X. et al. Thermal and residual excited-state population in a 3D transmon qubit. Phys. Rev. Lett. 114, 240501 (2015).

    ADS  CAS  Google Scholar 

  • 7.

    Serniak, K. et al. Hot nonequilibrium quasiparticles in transmon qubits. Phys. Rev. Lett. 121, 157701 (2018).

    ADS  CAS  Google Scholar 

  • 8.

    Aumentado, J., Keller, M. W., Martinis, J. M. & Devoret, M. H. Nonequilibrium quasiparticles and 2e periodicity in single-Cooper-pair transistors. Phys. Rev. Lett. 92, 066802 (2004).

    ADS  CAS  Google Scholar 

  • 9.

    Taupin, M., Khaymovich, I., Meschke, M., Mel’nikov, A. & Pekola, J. Tunable quasiparticle trapping in Meissner and vortex states of mesoscopic superconductors. Nat. Commun. 7, 10977 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 10.

    Serniak, K. et al. Direct dispersive monitoring of charge parity in offset-charge-sensitive transmons. Phys. Rev. Appl. 12, 014052 (2019).

    ADS  CAS  Google Scholar 

  • 11.

    Córcoles, A. D. et al. Protecting superconducting qubits from radiation. Appl. Phys. Lett. 99, 181906 (2011).

    ADS  Google Scholar 

  • 12.

    Barends, R. et al. Minimizing quasiparticle generation from stray infrared light in superconducting quantum circuits. Appl. Phys. Lett. 99, 113507 (2011).

    ADS  Google Scholar 

  • 13.

    Bespalov, A., Houzet, M., Meyer, J. S. & Nazarov, Y. V. Theoretical model to explain excess of quasiparticles in superconductors. Phys. Rev. Lett. 117, 117002 (2016).

    ADS  Google Scholar 

  • 14.

    Nakamura, Y., Pashkin, Y. A. & Tsai, J. S. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 786–788 (1999).

    ADS  CAS  Google Scholar 

  • 15.

    Oliver, W. D. & Welander, P. B. Materials in superconducting quantum bits. MRS Bull. 38, 816–825 (2013).

    CAS  Google Scholar 

  • 16.

    Kjaergaard, M. et al. Superconducting qubits: current state of play. Annu. Rev. Condens. Matter Phys. 11, 369–395 (2020).

    Google Scholar 

  • 17.

    Gottesman, D. Theory of fault-tolerant quantum computation. Phys. Rev. A 57, 127–137 (1998).

    ADS  CAS  Google Scholar 

  • 18.

    Grünhaupt, L. et al. Loss mechanisms and quasiparticle dynamics in superconducting microwave resonators made of thin-film granular aluminum. Phys. Rev. Lett. 121, 117001 (2018).

    ADS  Google Scholar 

  • 19.

    Cardani, L. et al. Reducing the impact of radioactivity on quantum circuits in a deep-underground facility. Preprint at https://arXiv.org/abs/2005.02286 (2020).

  • 20.

    Day, P. K., LeDuc, H. G., Mazin, B. A., Vayonakis, A. & Zmuidzinas, J. A broadband superconducting detector suitable for use in large arrays. Nature 425, 817–821 (2003).

    ADS  CAS  Google Scholar 

  • 21.

    Irwin, K. D., Hilton, G. C., Wollman, D. A. & Martinis, J. M. X-ray detection using a superconducting transition-edge sensor microcalorimeter with electrothermal feedback. Appl. Phys. Lett. 69, 1945–1947 (1996).

    ADS  CAS  Google Scholar 

  • 22.

    Moore, D. C. et al. Position and energy-resolved particle detection using phonon-mediated microwave kinetic inductance detectors. Appl. Phys. Lett. 100, 232601 (2012).

  • 23.

    Albrecht, S. et al. Transport signatures of quasiparticle poisoning in a Majorana island. Phys. Rev. Lett. 118, 137701 (2017).

    ADS  CAS  Google Scholar 

  • 24.

    Koch, J. et al. Charge insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).

    ADS  Google Scholar 

  • 25.

    Krantz, P. et al. A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 6, 021318 (2019).

    ADS  Google Scholar 

  • 26.

    Klimov, P. et al. Fluctuations of energy-relaxation times in superconducting qubits. Phys. Rev. Lett. 121, 090502 (2018).

    ADS  CAS  Google Scholar 

  • 27.

    Wang, C. et al. Measurement and control of quasiparticle dynamics in a superconducting qubit. Nat. Commun. 5, 5836 (2014).

    ADS  CAS  Google Scholar 

  • 28.

    Kozorezov, A. et al. Quasiparticle-phonon downconversion in nonequilibrium superconductors. Phys. Rev. B 61, 11807 (2000).

    ADS  CAS  Google Scholar 

  • 29.

    Kozorezov, A., Wigmore, J., Martin, D., Verhoeve, P. & Peacock, A. Electron energy down-conversion in thin superconducting films. Phys. Rev. B 75, 094513 (2007).

    ADS  Google Scholar 

  • 30.

    Allison, J. et al. Geant4 developments and applications. IEEE Trans. Nucl. Sci. 53, 270–278 (2006).

    ADS  Google Scholar 

  • 31.

    Agostinelli, S. et al. Geant4—a simulation toolkit. Nucl. Instrum. Meth. A 506, 250–303 (2003).

    ADS  CAS  Google Scholar 

  • 32.

    Dicke, R. The measurement of thermal radiation at microwave frequencies. Rev. Sci. Instrum. 17, 268–275 (1946).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 33.

    Aguilar-Arevalo, A. et al. Search for low-mass WIMPs in a 0.6 kg day exposure of the DAMIC experiment at SNOLAB. Phys. Rev. D 94, 082006 (2016).

    ADS  Google Scholar 

  • 34.

    Agnese, R. et al. Projected sensitivity of the SuperCDMS SNOLAB experiment. Phys. Rev. D 95, 082002 (2017).

    ADS  Google Scholar 

  • 35.

    Alduino, C. et al. First results from CUORE: a search for lepton number violation via 0νββ decay of 130Te. Phys. Rev. Lett. 120, 132501 (2018).

    ADS  CAS  Google Scholar 

  • 36.

    Agostini, M. et al. Improved limit on neutrinoless double decay of 76Ge from GERDA phase II. Phys. Rev. Lett. 120, 132503 (2018).

    ADS  CAS  Google Scholar 

  • 37.

    Gando, A. et al. Search for Majorana neutrinos near the inverted mass hierarchy region with KamLAND-Zen. Phys. Rev. Lett. 117, 082503 (2016).

    ADS  CAS  Google Scholar 

  • 38.

    Aalseth, C. E. et al. Search for neutrinoless double decay in 76Ge with the Majorana demonstrator. Phys. Rev. Lett. 120, 132502 (2018).

    ADS  CAS  Google Scholar 

  • 39.

    Albert, J. B. et al. Search for neutrinoless double-beta decay with the upgraded EXO-200 detector. Phys. Rev. Lett. 120, 072701 (2018).

    ADS  CAS  Google Scholar 

  • 40.

    Gustavsson, S. et al. Suppressing relaxation in superconducting qubits by quasiparticle pumping. Science 354, 1573–1577 (2016).

    ADS  CAS  Google Scholar 

  • 41.

    Wallraff, A. et al. Approaching unit visibility for control of a superconducting qubit with dispersive readout. Phys. Rev. Lett. 95, 060501 (2005).

    ADS  CAS  Google Scholar 

  • 42.

    Macklin, C. et al. A near–quantum-limited Josephson traveling-wave parametric amplifier. Science 350, 307–310 (2015).

    ADS  CAS  Google Scholar 

  • 43.

    Yan, F. et al. The flux qubit revisited to enhance coherence and reproducibility. Nat. Commun. 7, 12964 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 44.

    Tanabashi, M. et al. Review of particle physics. Phys. Rev. D 98, 030001 (2018).

    ADS  Google Scholar 

  • 45.

    Hagmann, C., Lange, D. & Wright, D. Cosmic-ray shower generator (CRY) for Monte Carlo transport codes. IEEE Nucl. Sci. Symp. Conf. Rec. 2, 1143–1146 (2007).

    Google Scholar 

  • 46.

    Mangiafico, S. S. Summary and analysis of extension program evaluation in R (Rutgers Cooperative Extension, 2016).

  • Leave a Reply

    Your email address will not be published. Required fields are marked *

    You May Also Like

    Trump signs an executive order allowing mining the Moon and asteroids – Universe Today

    In 2015, the Obama administration signed the U.S. Commercial Space Launch Competitiveness…

    Google just released 1,000 new images of the most gorgeous landscapes in Google Earth View

    Google has shared bird’s-eye-view images of some of Earth’s most stunning landscapes…